首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23909篇
  免费   2033篇
  国内免费   1730篇
  2024年   6篇
  2023年   250篇
  2022年   367篇
  2021年   1187篇
  2020年   883篇
  2019年   1039篇
  2018年   1030篇
  2017年   750篇
  2016年   1070篇
  2015年   1469篇
  2014年   1724篇
  2013年   1915篇
  2012年   2247篇
  2011年   1930篇
  2010年   1169篇
  2009年   1024篇
  2008年   1203篇
  2007年   1066篇
  2006年   923篇
  2005年   818篇
  2004年   696篇
  2003年   628篇
  2002年   547篇
  2001年   480篇
  2000年   416篇
  1999年   402篇
  1998年   252篇
  1997年   263篇
  1996年   257篇
  1995年   242篇
  1994年   221篇
  1993年   136篇
  1992年   208篇
  1991年   145篇
  1990年   130篇
  1989年   111篇
  1988年   73篇
  1987年   95篇
  1986年   57篇
  1985年   57篇
  1984年   43篇
  1983年   30篇
  1982年   31篇
  1981年   20篇
  1980年   9篇
  1979年   6篇
  1883年   3篇
  1882年   5篇
  1879年   6篇
  1877年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.

Background

Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate prediction of the ion effects in RNA folding can have a far-reaching impact on our understanding of RNA structure and function. Multivalent ions, especially Mg2+, are essential for RNA tertiary structure formation. These ions can possibly become strongly correlated in the close vicinity of RNA surface. Most of the currently available software packages, which have widespread success in predicting ion effects in biomolecular systems, however, do not explicitly account for the ion correlation effect. Therefore, it is important to develop a software package/web server for the prediction of ion electrostatics in RNA folding by including ion correlation effects.

Results

The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for the total electrostatic free energy, the different free energy components, and the mean number and the most probable distributions of the bound ions. A novel feature of the TBI server is its ability to account for ion correlation and ion distribution fluctuation effects.

Conclusions

By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online tool for computing ion-mediated electrostatic properties for given RNA structures. The results can provide important data for in-depth analysis for ion effects in RNA folding including the ion-dependence of folding stability, ion uptake in the folding process, and the interplay between the different energetic components.  相似文献   
992.
993.
994.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   
995.
996.
997.
998.
999.
1000.
Recent studies have highlighted the role of coupled side‐chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X‐ray crystallography data has recently revealed new information about the prevalence of alternate side‐chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X‐ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side‐chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side‐chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. Proteins 2015; 83:497–516. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号